About

PhD researcher in machine learning/optimization. Interested in quasi-Newton and second‑order optimization methods, and efficient/low‑precision training.

On top of that, I'm a big fan of tennis and badminton.

Skills

  • Python, PyTorch, NumPy, Pandas, SciPy, Matlab
  • C++ (working)
  • Optimization: first/second‑order
  • Quantization / low‑precision training
  • Experiment design & analysis
  • Linux, HPC/SLURM, basic profiling

Education

University of Basel — PhD, Machine Learning / Optimization
2022–present
Advisor: Aurelien Lucchi.
Technical University of Munich (TUM) — M.Sc., Electrical Engineering
2020–2022
Top 1%; GPA 5.93/6.0; focus on biomedical imaging & signal processing.
Technical University of Munich (TUM) — B.Sc., Electrical Engineering
2016–2020
Top 1%; GPA 5.93/6.0

Selected Publications

  1. Theoretical characterization of Gauss-Newton conditioning in Neural Networks. NeurIPS, 2024. pdf · code
  2. Zhao, J.*, Singh, SP.*, Lucchi, A.
  3. Cubic regularized subspace Newton for non-convex optimization. AISTATS, 2025 (Oral). pdf · code
  4. Zhao, J.*, Lucchi A.*, Doikov, N.*
  5. Deep optoacoustic localization microangiography of ischemic stroke in mice. Nature Communications 14 (1), 3584 pdf ·
  6. Deán-Ben, X., Robin, J., Nozdriukhin, D., Ni, R., Zhao, J., Glück, C., Droux, J., Sendón-Lago, J., Chen, Z., Zhou, Q., Weber, B., Wegener, S., Vidal, A., Arand, M., El Amki, M., Razansky, D. *equal contribution on items 1-2

Contact

Email: jim.zhao at unibas.ch

For opportunities: please include role, team, location, and start window.